
StatVerif: Verification of Stateful Processes

Myrto Arapinis and Eike Ritter and Mark D. Ryan
School of Computer Science, University of Birmingham, UK

Abstract—We present StatVerif, which is an extension the
ProVerif process calculus with constructs for explicit state, in
order to be able to reason about protocols that manipulate
global state. Global state is required by protocols used in
hardware devices (such as smart cards and the TPM), as
well as by protocols involving databases that store persistent
information. We provide the operational semantics of StatVerif.
We extend the ProVerif compiler to a compiler for StatVerif: it
takes processes written in the extended process language, and
produces Horn clauses. Our compilation is carefully engineered
to avoid many false attacks. We prove the correctness of
the StatVerif compiler. We illustrate our method on two
examples: a small hardware security device, and a contract
signing protocol. We are able to prove their desired properties
automatically.

I. INTRODUCTION

Motivation: Agents that engage in security protocols
necessarily involve a notion of state. For example, a protocol
may require an agent A to send a certain message, to receive
a response, and then to send another message that depends
on the response. In this case, A needs to maintain some state
information so that it knows which step of the protocol is
the next one. This notion of state is local within a session.

Sometimes, there is also a requirement to maintain longer-
term global state. This state is not local to a session: if one
session updates the state, then it is updated for other sessions
too. There seems to be two broad classes of protocols where
global state is relevant:

• Protocols involving security device interfaces. This
includes smartcards, stateful RFID chips, the trusted
platform module (TPM), and secure co-processors such
as the IBM 4758. Such devices maintain data including
keys, and also metadata about keys, including whether
a key is loaded, valid, or revoked. They may also have
special registers for recording state information, such
as monotonic counters, or the platform configuration
registers of the TPM. They may allow other data to be
saved on the device, such as the identity of a stateful
RFID tag, that affects its future behaviour.

• Protocols involving databases, such as protocols for
RFID tags (where a database holds information about
the status of tags), protocols for websites (e.g., where a
database holds status about transactions, and browsers
hold cookies), and key servers (where a database
records the status of keys). It also includes specialised
protocols such as fair exchange protocols and contract

signing protocols, where a trusted party maintains the
status of the exchange in a database.

This notion of global mutable state poses a problem
for existing protocol verification techniques, because those
techniques often make abstractions that will introduce false
attacks when state is considered. We show this in the running
example, below. This has been noted before, e.g., by Herzog
[1], Mödersheim [2], Guttman [3] and Delaune et al. [4].
For example, the ProVerif protocol analyser [5] models an
ever-increasing set of derivable facts representing attacker
knowledge, and is not able to associate those facts with the
states in which they arose. For this reason, the tool typically
reports many false attacks. The AVISPA tool [6] aims to
handle mutable state via its OFMC, CL-AtSe and SATMC
backends. However, the first two of these require concrete
bounds to be given on the number of sessions and fresh
nonces. SATMC can avoid this restriction in principle [7],
but as we mentioned in [4], SATMC performed poorly in
our experiments due to the relatively large message length,
a known weakness of SATMC.

To address this problem, Mödersheim [2] has developed
a framework which takes global state into account. He
introduces a low-level language called AIF, which extends
the IF language of AVISPA by adding sets. The framework
is based on a strong abstraction that identifies all objects that
are in exactly the same sets. This method appears to work
well, although he does not provide all the details. Since the
method is tightly coupled with a particular abstraction, the
scope of its applicability is not very clear. The author men-
tions the restrictions of the low-level and implementation-
focused language, and points out the desirability of a high-
level language for protocol designers. Guttman has also
addressed the problem, by extending the strand space model
with a notion of state [3]. However, this extended model does
not currently have tool support. In a similar direction to ours,
Delaune/Kremer/Ryan/Steel have coded stateful aspects of
the TPM directly in Horn clauses [8].

Our approach and contributions: We present StatVerif,
which is an extension the ProVerif process language with
constructs that allow one to directly model global mutable
state. This approach allows us to build on ProVerif’s existing
successes. More precisely,
• We extend the ProVerif process calculus with explicit

state, including assignments, and provide its operational
semantics.

• We extend the ProVerif compiler, which takes processes
written in the process language, and produces Horn
clauses. Our translation is carefully engineered to avoid
the false attacks mentioned above.

• We prove the correctness of the extended compiler;
that is, we show that attacks are not lost. Therefore,
a security proof at the clause level implies a proof at
the process calculus level.

• We illustrate our method on two examples: a small
hardware security device, and a contract signing pro-
tocol. We are able to prove their desired properties
automatically.

Full details of our code for the examples are available on
the web1.

Running example: The following example allows us
to explain our results more fully. Consider a hardware
device whose behaviour can be configured by the user.
The device generates a public key k. A user Alice may
use software to encrypt pairs (x, y) of secrets with k,
resulting in {(x, y)}k. Later, she can give the device and
a set {{(x1, y1)}k, . . . , {(xn, yn)}k} of such ciphertexts to
another user Bob. The device allows Bob to configure it as
“left” or “right”. If Bob chooses to configure it as “left”,
then after doing so he can use the device to obtain any of
the first components xi of the pairs. If he configures it with
“right”, then he gets to have the second components yi. Such
a device might, for example, be used to allow a customer to
choose between vouchers for a music website, or vouchers
for a social networking site, but not both.

We model such a device in our stateful language as the
following process:

1 new s; new k;
2 out(c, pk(k)) | [s 7→ init] |
3 (! lock; in(c, x); read s as y;
4 if y = init then s := x; unlock) |
5 (! in(c, x); read s as y; let z = adec(k, x) in
6 let xl = projl(z) in
7 let xr = projr(z) in
8 (if y = left then out(c, xl) |
9 if y = right then out(c, xr)))

In line 2, we declare a cell s with initial value init. In lines
3-4, we allow the user to provide any value to configure the
device (the useful values are left and right); this sets the cell
s. In lines 5-9, we allow the user to provide a ciphertext;
in return, the user will receive the left or right component,
according to the configuration. Notice that the device, once
configured left or right, cannot be configured again.

Details of the constructs including lock will be explained
later. We assume the usual equational theory for public key
encryption. The desired property is that, given a ciphertext

1markryan.eu/research/projects/StatVerif/

{(x, y)}k, the attacker cannot obtain the pair (x, y). This
property is easily automatically proved using our techniques.

It is interesting to note that it is possible to convert
such a process into a semantically-equivalent pure ProVerif
process. The cell s could be represented by a private channel,
that stores the configuration value. The subprocesses that
read the value s would instead input it from this private
channel. However, although the private channel process is
semantically equivalent to our process, ProVerif is not able
to prove that it satisfies the desired property because, as
mentioned, ProVerif’s abstractions would introduce false
attacks. In particular, once init is placed on the private chan-
nel, it remains forever available. Therefore, in the private
channel model, the device allows itself to be configured
and reconfigured at will. The user can obtain (x, y) by
configuring it first as left and then as right. Our technique
does not introduce for states the abstractions that ProVerif
uses for private channels.

Outline: We give some necessary background about
ProVerif and Horn clauses in section II. In section III, we
detail the syntax and semantics of our stateful language, and
show how it is translated into clauses in section IV. We also
prove the correctness of the translation. In section V, we
treat the case studies.

II. BACKGROUND

A. ProVerif process language

We start from the ProVerif process language introduced in
[9], which we recall in the first half of Figure 1 (up to and
including the conditional process). This language is similar
to the applied pi calculus [10], and is designed to model
security protocols. It allows processes to send terms built
over a signature including names and variables. These terms
model the messages that are exchanged during a protocol.
Cryptographic operations are modelled by reductions such
as

sdec(x, senc(x, y)) → y
adec(x, aenc(pk(x), y)) → y

check getmsg(pk(x), sign(x, y)) → y
checkpcs(pk(x), pcs(x, pk(y), z)) → ok

convert(y, pcs(x, pk(y), z)) → sign(x, z)

In this example, we consider a signature that has the
constructors senc, aenc, pk, pcs, sign and ok. The functions
sdec, checkpcs, check getmsg and convert are destructors.
The symbols x, y, z are variables. The first three reductions
model symmetric and asymmetric encryption and digital
signing of messages in the usual way. The last two model
private contract signatures that are used in our example in
section V.

Processes P,Q,R, . . . are constructed as follows. The
process 0 is the empty process which does nothing. In
new a;P , we restrict the name a in P ; this can be used to

2

model that a is a fresh random number or key. The process
in(M,x);P models the input of a term on a channel M ;
the term is then substituted for x in process P . The process
out(M,N) outputs a term N on a channel M . The parallel
composition P | Q models processes P and Q running
concurrently. The conditional if M = N then P else Q be-
haves as P when M and N are equal modulo the reductions,
and behaves as Q otherwise. !P is the replication of P ,
modelling an unbounded number of copies of the process
P . ProVerif can automatically check security properties,
while assuming that an arbitrary adversary process is run
in parallel.

Example 1: The following process P models a simple
mutual authentication protocol in which a party A engages
with another party, say B, by sending to B a signed and
encrypted session key k:

P = new skA; new skB ; new s;
(out(c, pk(skA)) | out(c, pk(skB)) | !PA | !PB)

PA = in(c, xpk); new k;
out(c, aenc(xpk, sign(skA, k)));
in(c, z);Q

PB = in(c, y); let y′ = adec(skB , y) in
let yk = check getmsg(pk(skA), y′) in
out(c, senc(yk, s))

B responds by sending a secret s encrypted with k. Of
course, this protocol is known not to be secure; an attacker
can send its own public key to A, and use the session key
it receives to start a parallel session with B. Then then the
attacker will be able to decrypt B’s secret.

B. Horn clauses

The ProVerif tool works by translating processes written
in the process language into clauses of a particular form.
Such a clause

H1, H2, . . . ,Hn → C

is a conjunction of hypotheses and a conclusion. The hy-
potheses Hi and the conclusion C are called facts, and
are built by applying predicate symbols to terms. ProVerif
uses the two predicates attacker and message. The fact
attacker(N) means that the attacker can learn the value N .
The fact message(M,N) means that the message N has
appeared on the channel M .

In the clause language of ProVerif, terms are formed from
variables and names, and by application of function symbols.
Names are distinguished syntactically by the fact that they
are followed by square brackets [. . .]; function symbols are
followed by round brackets (. . .); and variables are not
followed by brackets. To handle generation of new names
by a process, such names in the clause representation are
parametrised by the inputs that have occurred before the new
name is generated. The new name k in the running example

above is generated after the input of xpk; therefore, since
there may be different k’s for different xpk’s, the k becomes
parametrised by xpk, and is written k[xpk]. The running
example process P above is translated into the following
clauses:

Clauses corresponding to the process:

message(c[], pk(skA[]))
message(c[], pk(skB[]))
message(c[], xpk)→

message(c[], aenc(xpk, sign(skA[], k[xpk])))
message(c[], aenc(pk(skB[]), sign(skA[], y)))→

message(c[], senc(y, s[]))

The first two clauses correspond to the output of the public
keys in the main process P . The third one corresponds to
the attacker’s ability to supply any data xpk to PA, and in
return obtain aenc(xpk, sign(skA[], k[xpk])). The last one
corresponds to a similar service offered by PB .

Clauses corresponding to the attacker’s ability to
apply function symbols: These clauses depend only on the
equational theory and not on the specific process.

attacker(ok())
attacker(v)→ attacker(pk(v))
attacker(v1) ∧ attacker(v2)→ attacker(sign(v1, v2))
attacker(v1) ∧ attacker(v2)→ attacker(senc(v1, v2))
attacker(v1) ∧ attacker(v2)→ attacker(aenc(v1, v2))
attacker(v1) ∧ attacker(v2) ∧ attacker(v3)→

attacker(pcs(v1, v2, v3))

Clauses corresponding to the term reductions:

attacker(pk(x)) ∧ attacker(sign(x, y))→ attacker(y)
attacker(x) ∧ attacker(aenc(pk(x), y))→ attacker(y)
attacker(x) ∧ attacker(senc(x, y))→ attacker(y)

Clauses corresponding to the attacker’s ability to send
and receive messages: These clauses are the same for all
protocols and all equational theories.

message(v1, v2) ∧ attacker(v1)→ attacker(v2)
attacker(v1) ∧ attacker(v2)→ message(v1, v2)
attacker(c[])

The first of these three clause says that if the attacker has
a channel name v1 then he may read messages sent on it.
The second one is a dual; he may also send messages on
v1. Lastly, we stipulate that the channel c is public.

Returning to the authentication protocol example, one can
check that the fact attacker(s[]) can be derived from the
set of clauses. Indeed, this derivation corresponds to a real
attack, and the protocol is not secure.

3

C. Translation and correctness

Details of the translation from the process language to
clauses may be found in [9]. We do not detail it here,
although we extend it to handle states in section IV. The
translation has an important correctness property: it does
not omit attacks. More precisely, if the process allows the
attacker to obtain a secret value, say s, then attacker(s)
can be derived from the clauses that correspond to the
process. ProVerif uses a clause resolution strategy that is
complete. Therefore, if ProVerif declares that attacker(s)
is not derivable, it is indeed not derivable. In that case,
thanks to the correctness property of the translation, we can
conclude that the attacker is indeed not capable of obtaining
the secret s from the process.

III. THE STATVERIF LANGUAGE

We extend the process language of [9] recalled in section
II with some constructs to handle global state.

A. Syntax and informal semantics

To model global state, StatVerif adds the following new
processes:
• [s 7→M], which represents a cell s that has the initial

value M ;
• read s as x; P , which reads the value of the cell s

(calling it x), and then continues as P ;
• s := M ; P which assigns M to s and then continues

as P ;
• lock; P . This process begins a locked section; that

means that the process takes exclusive access to the
state cells, and continues as P .

• unlock; P , which releases the lock on the state cells,
continuing as P .

The full syntax of StatVerif is given in Figure 1, subject to
the following additional restrictions:
• [s 7→M] may occur only once for a given cell name s,

and may occur only within the scope of new, a parallel
and a replication. It may not be in the scope of an input,
output, conditional, let, assignment, lock, or unlock.

• In every branch of the syntax tree, every lock must be
followed by precisely one corresponding unlock.

• In lock; P , the part of the process P that occurs
before the next unlock, if any, may not include parallel,
replication, or lock.

In particular, these conditions imply that lock . . . unlock may
not be nested. The purpose of lock . . . unlock is to allow
manipulations of global state to proceed without interference
from other concurrent processes. Obviously, such interac-
tions would lead to unwanted results. For example, in our
security device, the lock and unlock in lines 3 and 4 ensure
that the device cannot move from the “left” configuration
to the “right” configuration. If we didn’t have the lock and
unlock, it would be possible to have the following execution.

M,N ::= terms
x, y, z variables
a, b, c, k, s names
f(M1, . . . ,Mn) constructor application

P,Q ::= processes
0 nil
out(M,N); P output
in(M,x); P input
P | Q parallel composition
!P replication
new a; P restriction
let x = g(M1, . . . ,Mn)

in P else Q destructor application
if M = N then P else Q conditional

[s 7→M] state
read s as x; P read
s := M ; P assign
lock; P begin locked section
unlock; P end locked section

Figure 1. The StatVerif calculus. The terms and the processes up to and
including the conditional are from [9]. The remaining processes are our
additions. Some syntax restrictions are mentioned in the text.

Consider two parallel sessions of the device. The first inputs
left on channel c and reads the state s. Then the second
session inputs right on channel c and reads the state s. At
this moment both sessions consider the device to be in state
init. It would thus be possible for the first session to update
s to left and then for the second one to update s to right, i.e.
the state s goes from init to left and then to right. In other
words, without the locked section it is possible to reconfigure
the device at will.

We sometimes omit the else branch of if-statements.
If the subprocess if M = N then P occurs in the
scope of a lock, then it is an abbreviation for if M =
N then P else unlock; 0. Otherwise, it is an abbreviation for
if M = N then P else 0.

The binders of our language are new a, in(c, x), let x =
g(M1, . . . ,Mn), and read s as x. As usual, we denote bn(P)
and bv(P) the set of bounded names and variables of P
respectively, and fn(P) and fv(P) the set of free names and
variables of P respectively.

B. Operational semantics

A semantic configuration for StatVerif is a tuple (E ,S,P),
where the environment E is a finite set of names, S
is a function mapping state cells to their values, P is
a finite multiset of pairs of the form (P, µ) where P
is a process and µ is a boolean indicating whether P
has locked the state cells. In a configuration (E ,S,P),
at most one of the µ is true. The environment E must

4

contain at least the free names of S and P . The config-
uration ({a1, . . . , an},S, {(P1, false), . . . , (Pm, false)}) in-
tuitively corresponds to the process new a1, . . . , an; ([s 7→
S(s) | s ∈ dom(S)] | P1 | . . . , | Pm).

The semantics of StatVerif is defined by a reduction
relation → on semantic configurations, shown in Figure 2.
It is an extension of the semantics of [9, Fig. 3]. Notice that
it preserves the invariant that at most one of the processes
in P can have locked the memory. The mode is set to true
by lock, and only one process can be in mode true. So if a
process has set its mode to true the other running processes
cannot access the memory until the corresponding unlock.
Assignment and read s as x update and read the store S in
the expected way.

C. Definition of secrecy

An adversary A is represented as a process of our calculus.
He has some initial knowledge of a finite set of names Init
with at least one channel name attch ∈ Init. A is said to be
an Init-adversary if A is a closed process and fn(A) ⊆ Init.

Informally, a protocol preserves the secrecy of a message
M from Init if when run in parallel with any Init-adversary
A, M cannot be output on a public channel.

Definition 1: Let P be a closed process, Init a finite set
of names such that attch ∈ Init, M a message. P preserves
the secrecy of M against Init if for any Init-adversary A,
there exists no trace of the form:
((Init ∪ fn(P) ∪ fn(M)), ∅, {(P | A, false)})→∗

(E ,S,Q∪ {(out(attch,M);Q,µ)}).
Here we consider that M is secret if it is secret in all

reachable states. We could have extended this definition to
express secrecy relative to a particular state, or to states of
a certain form, but for simplicity, and since we don’t need
to in what follows, we didn’t include it here.

IV. TRANSLATION TO CLAUSES

A. The translation

The translation generates clauses from a StatVerif process.
The clauses are built around the predicates attacker and
message with the following meanings:
• attacker(M̃,N) means that there is a reachable state

of the process in which the state variables s̃ have the
values M̃ , and in that state the attacker knows the value
N ; this binary predicate is also used in [8].

• message(M̃,N,K) means that there is a reachable
state of the process in which the state variables s̃ have
the values M̃ , and in that state the value K is available
on channel N .

1) Clauses corresponding to the process: Our translation
only applies to StatVerif processes of the form:

new m̃; ([s1 7→M1] | · · · | [sn 7→Mn] | P)

such that

• P has no [s 7→M] in it. (Of course, P may have reads
and assignments.)

• each name and variable is bound at most once in P ;
and each name and variable in P is either bound or
free but not both.

The tuple m̃ contains cell names and ordinary names. Some
of the s1, . . . , sn may be in m̃, and others not.

Note that any process with a finite number of cell names
can be converted into one of the prescribed form. While
the restriction of finite number of cells may appear to be
severe, we will see in section V that it is still possible to
correctly abstract processes with an unbounded number of
memory cells by processes with a finite number of memory
cells, and thus use our technique and then ProVerif to verify
them.

Let ρ0 be the function {a 7→ a[], si 7→ si[] | a ∈
fn(P), 1 ≤ i ≤ n} and let φ0 = (ρ0(M1), . . . , ρ0(Mn)).
The process above is translated into the union of the fol-
lowing sets of clauses:
• JP K ρ0 true [] φ0 false where the function J · KρH`φµ

is given in Figure 3;
• Some other clauses given in the next two subsections.

The rules of Figure 3 generalise the ones given in [9, §5.2.2].
The StatVerif compiler that performs the translation main-

tains the variables ρ, H , `, φ and T , which have the
following purposes:
• ρ is a function mapping names and variables of the

process language to names and variables of the clause
language.

• H is a conjunction of formulas used to accumulate the
hypotheses of clauses as they are constructed.

• ` accumulates the set of variables that have been input
so far by the thread being processed. This set is used
to parameterise the Skolem names that represent values
created by “new”.

• φ is a tuple of terms (M1, . . . ,Mn) representing the last
known values of the state variables in the thread under
consideration. This information is used to generate
clauses when a locked section is being processed.

• µ is a boolean indicating whether the currently pro-
cessed thread is in a locked section.

We explain the rules for the translation given in Figure 3.
• The rules for processing 0, parallel, “new”, “let” and

“if” are similar to those of [9], with obvious changes
for our more general setting.

• The rule for processing !P is simpler than [9], since
we don’t treat correspondence properties for now.

• For an input, we record in ρ and ` the variable that is
input, and add the appropriate hypothesis to H . If the
lock is true, then we can be sure that the state used
in the hypothesis is the current state of the thread. If
the lock is false, then another subprocess could have

5

(E ,S,P ∪ {(P | 0, false)}) → (E ,S,P ∪ {(P, false)})
(E ,S,P ∪ {(!P, false)}) → (E ,S,P ∪ {(!P | P, false)})

(E ,S,P ∪ {(P | Q, false)}) → (E ,S,P ∪ {(P, false), (Q, false)})
(E ,S,P ∪ {(new a;P, µ)}) → (E ∪ {a′},S,P ∪ {(P{a′/a}, µ)}) if a′ fresh

(E ,S,P ∪ {(let x = g(M1, . . . ,Mn) in P else Q,µ)}) → (E ,S,P ∪ {(P{M ′/x}, µ)})
if g(M1, . . . ,Mn)→M ′

(E ,S,P ∪ {(let x = g(M1, . . . ,Mn) in P else Q,µ)}) → (E ,S,P ∪ {(Q,µ)})
if 6 ∃M ′, g(M1, . . . ,Mn)→M ′

(E ,S,P ∪ {(if M = M then P else Q,µ)}) → (E ,S,P ∪ {(P, µ)})
(E ,S,P ∪ {(if M = N then P else Q,µ)}) → (E ,S,P ∪ {(Q,µ)}) if M 6= N

(E ,S,P ∪ {(out(M,N);P, µ1), (in(M,x);Q,µ2)}) → (E ,S,P ∪ {(P, µ1), (Q{N/x}, µ2))

(E ,S,P ∪ {([s 7→M], false)}) → (E ,S ∪ {s 7→M},P)
if s ∈ E and s 6∈ dom(S)

(E ,S,P ∪ {(lock;P, false)}) → (E ,S,P ∪ {(P, true)})
if ∀(Q,µ) ∈ P, µ = false

(E ,S,P ∪ {(unlock;P, true)}) → (E ,S,P ∪ {(P, false)})
(E ,S,P ∪ {(read s as x;P, µ)}) → (E ,S,P ∪ {(P{S(s)/x}, µ)}) if s ∈ dom(S)

and ∀(Q,µ′) ∈ P, µ′ = false
(E ,S,P ∪ {(s := M ;P, µ)}) → (E ,S[s 7→M],P ∪ {(P, µ)}) if s ∈ dom(S)

and ∀(Q,µ′) ∈ P, µ′ = false

Figure 2. The semantics of StatVerif. E is a set of names. S is a function from state cells to their current values. P is the set of processes to be run, and
P is the process currently running. µ is a boolean indicating whether the current process is in a locked section.

changed the state, so we have to allow an arbitrary
state.

• An output generates a clause that reveals the output on
the channel, using the hypotheses accumulated so far.

• For a lock, we initialise the assumed state with arbi-
trary information (that may be the result of a parallel
subprocess), and set the lock µ to true.

• An unlock unsets the lock.
• The assignment s := M updates the current state
φ. As for an input, if the lock is true then other
values in φ that were not assigned to are preserved.
If the lock is false, they are not preserved, because
another parallel process could have overwritten them.
Additionally, we generate the “inheritance” clauses that
transport attacker knowledge and message availability
on channels from the state before the assignment to the
one after it.

• The read process assigns the cell that is read to the
stipulated variable. As in the input and assignment
cases, the state is propagated when the lock is true,
whereas an arbitrary state is assumed when the lock
is false. The hypothesis added to H ensures that the
si that was read is from a reachable state. Inside a
locked section, read updates the record ρ of variable
definitions.

2) Clauses corresponding to mutability of public state: If
a state cell name s is known to the attacker, then the attacker
is able to read and write values from and to the cell. For
each i ∈ {1, 2, . . . , n}, we have the following clauses for
reading:

attacker((x1, . . . , xn), si[])→ attacker((x1, . . . , xn), xi)

and the following ones for writing:

attacker((x1, . . . , xn), si[]) ∧ attacker((x1, . . . , xn), y) ∧
message((x1, . . . , xn), xc, xm)→

message((x1, . . . , xi−1, y, xi+1, . . . , xn), xc, xm)
attacker((x1, . . . , xn), si[]) ∧ attacker((x1, . . . , xn), y) ∧

attacker((x1, . . . , xn), xm)→
attacker((x1, . . . , xi−1, y, xi+1, . . . , xn), xm)

3) Other clauses: Additionally, we have clauses corre-
sponding to the function symbols and the term reductions
for the signature at hand. These are the stateful counterparts
of the clauses used by ProVerif:
For each constructor f of arity n,

attacker(xs, x1) ∧ · · · ∧ attacker(xs, xn)→
attacker(xs, f(x1, . . . , xn)).

For each constructor g, for each rewrite rule
g(M1, . . . ,Mn)→M , let xs be a fresh variable,

attacker(xs,M1) ∧ · · · ∧ attacker(xs,Mn)
→ attacker(xs,M)

6

J0KρH`φµ = ∅

JQ1 | Q2KρH`φfalse = JQ1KρH`φfalse ∪ JQ2KρH`φfalse

J!QKρH`φfalse = JQKρH`φfalse

Jnew a;QKρH`φµ =
{

JQK(ρ ∪ {a 7→ a[`]})H`φµ
JQK(ρ ∪ {a 7→ attn[]})H`φµ

if a ∈ bn(P)
otherwise

Jin(M,x);QKρH`φfalse = JQK(ρ ∪ {x 7→ x, vs1 7→ vs1, . . . , vsn 7→ vsn}) H ′ (x :: `) φ false
where φ0 = (vs1, . . . , vsn),with vs1, . . . , vsn fresh

and H ′ = H ∧message(φ0, ρ(M), x)

Jin(M,x);QKρH`φtrue = JQK(ρ ∪ {x 7→ x})(H ∧message(φ, ρ(M), x))(x :: `)φtrue

Jout(M,N);QKρH`φµ = {H ⇒ message(φ, ρ(M), ρ(N))} ∪ JQKρH`φµ

Jlet x = g(M1, . . . ,Mn) in

Q1 else Q2KρH`φµ =
⋃{

JQ1K((ρσ) ∪ {x 7→ p′σ′})(Hσ)(`σ)(φσ)µ |
g(p′1, . . . , p

′
n)→ p′ ∈ def(g) and (σ, σ′) mgus and

M1ρσ = p′1σ
′, . . . ,Mnρσ = p′nσ

′
}
∪ JQ2KρH`φµ

Jif M = N then Q1

else Q2KρH`φµ = JQ1K(ρσ)(Hσ)(`σ)(φσ)µ ∪ JQ2KρH`φµ where σ = mgu(ρ(M), ρ(N))

Jlock;QKρH`φfalse = JQK(ρ ∪ {vs1 7→ vs1, . . . , vsn 7→ vsn})H`φ0true
where φ0 = (vs1, . . . , vsn), with vs1, . . . , vsn fresh

Junlock;QKρH`φtrue = JQKρH`φfalse

Jsi := M ;QKρH`φfalse = JQK(ρ ∪ {vs1 7→ vs1, . . . , vsn 7→ vsn, vc 7→ vc, vm 7→ vm})H`φfalse
∪{H ∧message(φ0, vc, vm)⇒ message(φ1, vc, vm)}
∪{H ∧ attacker(φ0, vm)⇒ attacker(φ1, vm)}

where φ0 = (vs1, . . . , vsi−1, vsi, vsi+1, . . . , vsn),
and φ1 = (vs1, . . . , vsi−1, ρ(M), vsi+1, . . . , vsn)

with vs1, . . . , vsn, vc, vm fresh

Jsi := M ;QKρH`φtrue = JQK(ρ ∪ {vc 7→ vc, vm 7→ vm})H`φ′true
∪{H ∧message(φ, vc, vm)⇒ message(φ′, vc, vm)}
∪{H ∧ attacker(φ, vm)⇒ attacker(φ′, vm)}

where φ = (M1, . . . ,Mi−1,Mi,Mi+1, . . . ,Mn),
and φ′ = (M1, . . . ,Mi−1, ρ(M),Mi+1, . . . ,Mn),

and vc, vm fresh

Jread si as x;QKρH`φfalse = JQK(ρ ∪ {x 7→ vsi, vs1 7→ vs1, . . . , vsi 7→ vsi, . . . , vsn 7→ vsn,
vc 7→ vc, vm 7→ vm})(H ∧message(φ0, vc, vm))`φfalse

where φ0 = (vs1, . . . , vsi, . . . , vsn),
with vs1, . . . , vsi, . . . , vsn, vc, vm fresh

Jread si as x;QKρH`φtrue = JQK(ρ ∪ {x 7→Mi, vc 7→ vc, vm 7→ vm})(H ∧message(φ, vc, vm))`φtrue
where φ = (M1, . . . ,Mi, . . . ,Mn) and vc, vm fresh

Figure 3. The rules for translating a stateful process into clauses.

7

The attacker is also able to read and write on channels that
it knows, and the stateful analogues of those clauses are:

message(xs, v1, v2) ∧ attacker(xs, v1)→ attacker(xs, v2)
attacker(xs, v1) ∧ attacker(xs, v2)→ message(xs, v1, v2)

Finally, the attacker knows
• all the free names of P , i.e. we have the clause

attacker(ρ0(φ0), n[]) for every n ∈ fn(P),
• as well as the channel attch and a name attn he

has generated on his own, i.e. we have the clauses
attacker(ρ0(φ0), attch[]) and attacker(ρ0(φ0), attn[]),

where ρ0 and φ0 are as defined in section IV-A1.

B. Correctness

Let P ′ = new m̃([s1 7→M1] | · · · | [sn 7→Mn] | P) be a
closed process and A an Init-adversary s.t. attch ∈ Init.
Without loss of generality, we can assume that the free cell
names in A are included in the free cell names of P , and that
the set of bounded cell names of A is empty. The reason is
that any other cell name of the intruder can be equivalently
encoded using channel names as described by Milner.

Instrumented operational semantics
In what follows, we will need to identify different in-

stances of a new a arising when new a is in the scope of
a !. We will consider instrumented semantic configurations
(E,S,P) where E will now be a mapping from names to
StatVerif terms (E records for each name a′ the new a in
P it is an instance of), S is as before a function from cell
names to terms, and P is a set of tuples (Q, `, µ) where we
will record in ` the list of M1, . . . ,Mn that where previously
input to reach this configuration.

We adapt the semantics to an instrumented operational
semantics which is defined by a reduction relation on
instrumented configurations. Except for the reduction rules
for new and comm all the other rules of Figure 2 give rise
to a corresponding instrumented rule where E and the `’s
are unchanged. And
• The reduction rule for communication becomes the

following

(E,S,P ∪ {(out(M,N);Q1, `1, µ1),
(in(M,x);Q2, `2, µ2)}) →

(E,S,P ∪ {(Q1, `1, µ1), (Q2{N/x}, (N :: `2), µ2))

which records N in `2.
• The reduction rule for name generation is replaced by

the two following ones

(E,S,P ∪ {(new a;Q, `, µ)}) →
(E ∪ {a′ 7→ a[E(`)]},S,P ∪ {(Q{a′/a}, `, µ)})

if a ∈ bn(P) and a′ fresh

which records that a′ is an instance of new a. ` is used
to distinguish two instances of new a on the basis of

the previous inputs.

(E,S,P ∪ {(new a;Q, `, µ)}) →
(E ∪ {a′ 7→ attn[]},S,P ∪ {(Q{a′/a}, `, µ)})

if a 6∈ bn(P) and a′ fresh

which records that a′ is an name of the attacker A.
It is easy to see that the instrumented semantics allows
exactly the same traces as the original semantics, only
adding annotations on the origin of each name.

Proof of correctness
Let CP be the set of clauses generated by StatVerif when

applied to P , and FP the set of closed facts derivable from
CP . Let S0 = {s1 7→ M1, . . . , sn 7→ Mn}. Let E0 be the
environment such that
• fn(P) ∪ cells(P) ∪ fn(A) = dom(E0),
• E0(a) = a[] for all a ∈ fn(P) ∪ cells(P) ∪ {attch},
• E0(a) = attn[] for all a ∈ fn(A) r {attch}.
Let S = {s1 7→ K1, . . . , sn 7→ Kn} be a state. S

denotes the ordered representation of S , defined as S =
(K1, . . . ,Kn).

We will say that a state R is a predecessor of the state S ,
denoted R ≤ S if:

attacker(R, attch[]) ∈ FP

∧ ∀M,N message(R,M,N) ∈ FP ⇒
message(S ,M,N) ∈ FP

∧ ∀M attacker(R,M) ∈ FP ⇒
attacker(S ,M) ∈ FP

The proof uses the type system to capture invariants
of processes. This type system is defined by the rules of
Figure 4 (an extended version of the type system of [9],
[11]).

A process Q is well typed w.r.t. the environment E, the
state S , the list of StatVerif terms `, and the mode µ, if
(E,S , `, µ) ` P can be derived from the rules and axiom of
Figure 4.

Before proceeding with the proof of our main theorem,
we need to establish some properties of our typing system.

Lemma 1 (Typability of A): (E0, E0(S0), [], false) ` A
Proof sketch: Let B be a subprocess of A. Let E be

an environment, S a state, ` a list of terms. We first prove
that if (i) E0 ⊆ E; and (ii) E0(S0) ≤ S ; and (iii) for all a ∈
fn(B), attacker(S , E(a)) ∈ FP ; and (iv) for all x ∈ fv(B),
attacker(S , E(x)) ∈ FP , then

(E,S , `, µ) ` B

where µ = true if B is under a lock in A and µ = false
otherwise. The proof is an induction on the depth of B.

To conclude the proof of Lemma 1 we need to show that
A, E0, E0(S0), and [] satisfy conditions (i)-(iv). (i) E0 ⊆ E0.
(ii) E0(S0) ≤ E0(S0). (iii) By construction, ∀a ∈ fn(A)
• If a = attch, then E0(a) = attch[], and by construction

attacker(E0(S0), attch[]) ∈ CP .

8

message(S , E(M), E(N)) ∈ FP (E,S , `, µ) ` Q
τout

(E,S , `, µ) ` out(M,N);Q

∀N message(S , E(M), N) ∈ FP ⇒ (E ∪ {x 7→ N},S , (N :: `), true) ` Q
τinT

(E,S , `, true) ` in(M,x);Q

∀T ∀N (S ≤ T ∧message(T , E(M), N) ∈ FP) ⇒ (E ∪ {x 7→ N},T , (N :: `), false) ` Q
τinF

(E,S , `, false) ` in(M,x);Q

τnil
(E,S , `, µ) ` 0

(E,S , `, false) ` Q (E,S , `, false) ` Q′
τpar

(E,S , `, false) ` Q | Q′
(E,S , `, false) ` Q

τrepl
(E,S , `, false) `!Q

(E(M) = E(N)⇒ (E,S , `, µ) ` Q) (E,S , `, µ) ` Q′
τif

(E,S , `, µ) ` if M = N then Q else Q′

a ∈ bn(P) ⇒ (E ∪ {a 7→ a[`]},S , `, µ) ` Q
τnewP

(E,S , `, µ) ` new a;Q

a ∈ bn(A) ⇒ (E ∪ {a′ 7→ attn[]},S , `, µ) ` Q
τnewA

(E,S , `, µ) ` new a;Q

∀M (g(E(M1), . . . , E(Mn))→M) ⇒ ((E ∪ {x 7→M},S , `, µ) ` Q ∧ (E,S , `, µ) ` Q′)
τlet

(E,S , `, µ) ` let x = g(M1, . . . ,Mn) in Q else Q′

(E ∪ {x 7→ S (si)},S , `, true) ` Q
τreadT

(E,S , `, true) ` read si as x;Q

∀T S ≤ T ⇒ (E ∪ {x 7→ T (si)},T , `, false) ` Q
τreadF

(E,S , `, false) ` read si as x;Q

S ≤ S [si 7→ E(M)] (E,S [si 7→ E(M)], `, true) ` Q
τwriteT

(E,S , `, true) ` si := M ;Q

∀T S ≤ T ⇒ (T ≤ T [si 7→ E(M)] ∧ (E,T [si 7→ E(M)], `, false) ` Q)
τwriteF

(E,S , `, false) ` si := M ;Q

∀T S ≤ T ⇒ (E,T , `, true) ` Q
τb atom

(E,S , `, false) ` lock;Q

(E,S , `, false) ` Q
τe atom

(E,S , `, true) ` unlock;Q

Figure 4. Typing system for correctness proof

• If a 6= attch, then E0(a) = attn[], and by construction
attacker(E0(S0), attn[]) ∈ CP .

Thus ∀a ∈ fn(A) attacker(E0(S0), E0(a)) ∈ FP . (iv) A is
an Init-adversary, so it is a closed process. Thus fv(A) = ∅.

We can thus apply the induction result we just established
to conclude that (E0, E0(S0), [], false) ` A.

Lemma 2 (Typability of P): (E0, E0(S0), [], false) ` P .
Proof sketch: Let Q be a subprocess of P , and σ, ρ,

H , `, φ, and µ. We first prove that if
(i) ρ binds all the free names and variables of Q,

(ii) σ is a closed substitution,
(iii) µ = true if Q is under a lock in P , and µ = false

otherwise,
(iv) CP ⊇ JQKρH`φµ,
(v) for all message(ξ,M,N) ∈ H , message(ξσ,Mσ,Nσ)

can be derived from CP ,

(vi) attacker(φσ, attch[]).
Then,

(ρσ, φσ, `σ, µ) ` Q

The proof is an induction over the depth of Q.
Now, let ρ = E0, σ s.t. dom(σ) = ∅, H = true,

` = [], φ = E0(S0) and µ = false. (i) Since by hypotheses
fv(P) = ∅ and fn(P) ⊆ dom(E0) by construction, ρ
binds the free names and variables of P . (ii) σ is a closed
substitution. (iii) P is not under a lock in P , thus µ = false
satisfies condition (iii). (iv) By definition CP = JP KρH`φµ.
(v) H being empty, Hσ can be derived from CP . (vi)
By construction, attacker(E0(S0), attch[]) ∈ CP . So in
particular attacker(φσ, attch[]) ∈ FP . Thus, P , ρ, σ, H ,
`, φ and µ satisfy the conditions of our induction result
according to which (E0, E0(S0), [], false) ` P .

9

Lemma 3 (Subject reduction): Let (E,S,Q) →
(F , T ,R) be a valid instrumented transition, and no
[s 7→ M] occurs in Q. If (E, E(S), E(ı), µ) ` Q for
all (Q, ı, µ) ∈ Q, then (F ,F (T),F (), ν) ` R for all
(R, , ν) ∈ R.

Proof sketch: The proof is done by case analysis on
the rule that fired the transition (E,S,Q)→ (F , T ,R).

Theorem 1: Consider the instrumented trace

tr = (E0,S0, {(P | A, [], false)}) →∗ (E,S,Q∪{(Q, `, µ)})

If Q = out(M,N);Q′ then message(E(S), E(M), E(N)) ∈
FP and attacker(E(S), attch[]) ∈ FP .

Proof: Consider the instrumented trace

tr = (E0,S0,Q0) = (E0,S0, {(P | A, [], false)})
→ (E1,S1,Q1)

→ . . .
→ (En,Sn,Qn) = (E,S,Q∪ {(Q, `, µ)})

We prove by induction on i, that for all i ∈ {0, . . . , n}

attacker(Ei(Si), attch[]) ∈ FP

and
∀(R, ı, ν) ∈ Qi (Ei, Ei(Si), Ei(ı), ν) ` R

Base case (i = 0). By definition of the StatVerif
compiler attacker(E0(S0), attch[]) ∈ CP and thus
attacker(E0(S0), attch[]) ∈ FP . Moreover, by Lemma 1 we
have (E0, E0(S0), [], false) ` A, and by Lemma 2 we have
(E0, E0(S0), [], false) ` P . Thus, according to the typing rule
τpar, (E0, E0(S0), [], false) ` A | P .
Inductive case (i = n). By inductive hypothesis we know
that the last transition satisfies the hypotheses of Lemma 3
according to which attacker(En(Sn), En(attch)) ∈ FP , and
(En, En(Sn), En(ı), ν) ` R for all (R, ı, ν) ∈ Q.
This concludes our induction and gives us
(E, E(S), E(`), µ) ` Q and attacker(E(S), attch[]) ∈
FP . But then, by rule τout we know that
message(E(S), E(M), E(N)) ∈ FP .

Corollary 1 (Correctness w.r.t. secrecy): Let M a mes-
sage. If P doesn’t preserve the secrecy of M against Init,
i.e. there exist an instrumented trace tr = (E0,S0, {(P |
A, [], false)} →∗ {(E,S,Q ∪ {(Q, `, false)}, s.t. Q =
out(attch,M);Q′. Then the fact attacker(E(S), E(M)) ∈
FP .

Proof: This follows immediately from Theorem 1.

V. CASE STUDIES

To illustrate our method, we describe two case studies in
detail. We show the processes in the StatVerif language, and
use our rules to translate them to clauses. We use ProVerif to
reason with the clauses and to verify the security properties.

A. A simple security device
1) Description and process: Consider again the hardware

device introduced in the introduction. We take the process
representing the device, together with the process represent-
ing Alice who creates the ciphertexts:
1 let device =
2 new s; [s 7→ init] |
3 out(c, pk(k)) |
4 (! lock; in(c, x); read s as y;
5 if y = init then s := x; unlock) |
6 (! lock; in(c, x); read s as y; let z = adec(k, x) in
7 let zl = projl(z) in
8 let zr = projr(z) in
9 ((if y = left then out(c, zl); unlock) |
10 (if y = right then out(c, zr); unlock)))

11 let user =
12 new sl; new sr; new r;
13 out(c, aenc(pk(k), r, (sl, sr)))

14 let system = new k; device | ! user

Bob is the attacker. He receives the device and the cipher-
texts, and chooses the messages to send to the device. We
assume the term reductions:

adec(u, aenc(pk(u), v, w))→ w
projl((u, v))→ u
projr((u, v))→ v

The query is query attacker(vs, (sl[], sr[]))
2) Clauses corresponding to the protocol:

We apply the translation described in section IV.
We will only show how to compute the clauses
corresponding to the system process. In other words
we will compute JsystemKρ0 true []φ0false, where
ρ0 = {c 7→ c[], left 7→ left [], right 7→ right [], init 7→ init []}
and φ0 = (init []).

The out(c, pk(k)) on line 3 is translated to:

message(init [], c[], pk(k[]))

The s := x on line 5, with in(c, x) and read s as y from
line 4, generates:

message(init [], c[], x) ∧ message(init [], yc, ym) ∧
message(init [], zc, zm)→ message(x, zc, zm)

message(init [], c[], x) ∧ message(init [], yc, ym) ∧
attacker(init [], zm)→ attacker(x, zm)

The out(c, zl) on line 9, with lines 6 and 7, is translated to:

message(left [], c[], aenc(pk(k[]), xr , (xsl , xsr))) ∧
message(left [], yc, ym)→ message(left [], c[], xsl)

The out(c, zr) on line 10, with lines 6 and 8, is translated
to:

message(right [], c[], aenc(pk(k[]), xr , (xsl , xsr))) ∧
message(right [], yc, ym)→ message(right [], c[], xsr)

10

The output on line 13 is translated to:

message(init [], c[], aenc(pk(k[]), r[], (sl [], sr [])))

3) Results of the analysis: We ran ProVerif on the
clauses, together with the query, given above. ProVerif
immediately concluded that the query is not satisfied (i.e.,
the protocol is secure). We made a few sanity checks, such as
modifying the device to allow it to be configured again, and
in that case ProVerif reported the valid attack as expected.

B. Contract signing protocol

A contract signing protocol allows a set of participants to
exchange messages with each other in order to arrive at a
state in which each of them has a pre-agreed contract signed
by the others. An important property of contract signing
protocols is fairness: no participant should be left in the
position of having sent another participant his signature on
the contract but not having received the others’ signatures.
To ensure fairness, a trusted party is necessary. Garay
and Mackenzie [12] proposed such a protocol which, for
efficiency, involves the trusted party only to resolve disputes.
This protocol is based on private contract signatures. A
private contract signature by A for B on m w.r.t. trusted
party T acts as a promise by A to B to sign m.

In this section we will show how by applying our tech-
niques to the two-party instance of the Garay and Mackenzie
(GM) protocol, we automatically prove that the two-party
version of this protocol satisfies fairness. To achieve this
result we need no bound on the number of sessions/con-
tracts or agents considered. In comparison, if we model the
protocol by a plain ProVerif process, using private channels
to model the state of the trusted party, and run ProVerif on
it, then the tool reports a false attack. It reports the same
false attack even if only one contract is considered.

Currently, the only other automatic proof of security of
a protocol of this kind i.e. with participants holding global
mutable state, is the one achieved by Mödersheim in his
framework [2]. Again, because his language is so low level,
we couldn’t understand the hypotheses of his proof just by
inspecting his model of the protocol. It is not clear to us
how many participants, or contracts are considered.

1) Description and process: The protocol is informally
described in Figure 5 and consists of four subprotocols:
Main, Abort1, Resolve2 and Resolve1. Usually, contract
signers try to achieve the exchange without the help of the
trusted party. They first exchange their promises to sign the
contract (messages m1 and m2), and then exchange their
actual signatures of the contract (messages m3 and m4). If
for some reason they do not succeed in completing their
exchange, the signers can ask the trusted party to arbitrate,
by asking it either to abort or to resolve:

1) If P2 doesn’t receive P1’s promise, he just quits.

P1 P2m1=pcs(sk(P1),P2,T,ct)−−−−−−−−−−−−−−−−−−−→
if ¬ok, quit

m2=pcs(sk(P2),P1,T,ct)←−−−−−−−−−−−−−−−−−−−
if ¬ok, abort(m1)

m3=sign(sk(P1),ct)−−−−−−−−−−−−−−−−−−−→
if ¬ok, resolve2(m1,m4)

m4=sign(sk(P2)),ct)←−−−−−−−−−−−−−−−−−−−
if ¬ok, resolve1(m3,m2)

Figure 5. The GM Main protocol (see [12])

2) If P1 doesn’t receive P2’s promise, he asks the trusted
party to abort. He includes his own promise in his
request.

3) If P2 (resp. P1) doesn’t receive P1’s (resp. P2’s) signa-
ture, he asks the trusted party to resolve. He includes
his own signature, and P1’s (resp. P2’s) promise to sign
the contract, in his request.

To deal with these requests, the trusted party records the
following information for each contract ct:
• status - indicating whether it has solved any dispute

regarding ct in the past. The possible values are init,
aborted, resolved1 and resolved2.

• sigs - the acknowledgement of its decision, if it has
made one. As we will now see, this is either its
signature on the received abort request or its signature
on the two contracts.

On receipt of a request, the trusted party checks whether
it had to solve a dispute on the same contract in the past.
If it did (status 6= init), it just sends the decision it had
taken and stored at that time (sigs). If it is the first request
it receives, then
• if it is an abort request including the promise m =

pcs(x, y, T, ct), it acknowledges the request with the
message sign(skT,m). It then updates the status of ct
to aborted and stores its decision sign(skT,m),

• if it is a resolve request including the promise
pcs(x, y, T, ct) and the signature sign(sk(y), ct),
it converts x′s promise into a valid signature
sign(sk(x), ct) and replies with the message
sign(skT, sign(sk(x), ct), sign(sk(y), ct)). In other
words, it sends to the plaintiff the signature
corresponding to the promise. It also stores its
reply in sig and updates the status of ct to resolved1
or resolved2, according to which party sent the
request.

The following process represents the trusted party:
1 let T = new skT ; (out(c, pk(skT)) | !C)
2 let C = new s; new ct ;
3 [s 7→ (init, init)] |
4 out(c, ct); in(c, xpk1); in(c, xpk2);
5 (! Abort1 | ! Resolve2 | ! Resolve1)

where Abort1, Resolve2 and Resolve1 are the subprocesses
modelling the trusted party’s behaviour upon an abort or

11

resolve request. After having published its public key (line
1), the trusted party can start handling contracts (!C). As
we just discussed, for each contract it needs to create a new
memory cell s , which it initialises with (init, init) (lines
2 and 3), to record information regarding the particular
contract. It can then start replying to requests regarding this
contract (line 5). The details of the subprocesses Abort1,
Resolve2, and Resolve1, together with the details of the
reduction rules modelling the cryptographic primitives, are
given in appendix A.
As we explained in this section’s introduction, it is important
that the trusted party is fair to both parties. In other words,
we want the following:
• if the participant P1 has first contacted the trusted

party and requested for contract ct an abort which was
granted, then P2 cannot obtain from the trusted party
P1’s signature (i.e. he cannot receive the signature of
P1 on contract ct signed with the trusted party’s secret
key);

• if the participant P1 (resp. P2) has first contacted the
trusted party and requested for contract ct a resolve
which was granted, then P2 (resp. P1) cannot obtain
from the trusted party an abort confirmation (i.e. the
promise of P1 (resp. P2) on contract ct signed with the
trusted party’s secret key);

These three properties can be combined and stated as a
secrecy property, and can be formalised as

query attacker(xs, (abortC, resolveC))

where abortC = sign(sk(T), pcs(sk(P1), P2, T, ct))
is the abort acknowledgement, and resolveC =
sign(sk(T), (sign(P1, ct), sign(P2, ct))) is the resolve
acknowledgement.
Of course, there are many more properties that one would
want a contract signing protocol to satisfy, but we only con-
sidered this one for the purpose of illustrating our techniques
and showing that they work in non-trivial situations.
2) From unbounded number of cell names to bounded: Our
translation only applies to processes with a finite number
of cell names, i.e. with no [s 7→ M] under a replication.
However, in the GM protocol, the trusted party creates two
cell names for each contract. So for an unbounded number
of contracts it creates an unbounded number of cell names.
To prove that the GM protocol satisfies fairness using our
techniques we make the following correct abstraction: the
trusted party behaves according to the protocol only for a
single contract ct. For this witnessing contract it creates the
two cells it needs, and to any request regarding ct it replies
and updates its memory according to the protocol. Thus,
fairness of the protocol is proved only for ct. To requests
concerning any other contract ct′ it replies as if it were the
first time it received any request regarding ct′.
So the process for the trusted party that we actually verify
is the following:

1 let T’ = new skT ; (out(c, pk(skT)) | C | !C’)
2 let C’ = new ct ′; out(c, ct ′); in(c, xpk1); in(c, xpk2);
3 (! Abort1’ | ! Resolve2’ | ! Resolve1’)

where C is as we defined it in section V-B1 and Abort1’,
Resolve2’, Resolve1’ are like Abort1, Resolve2, Resolve1
but with no checks on the status before replying. These
subprocesses are given in details in appendix B.
Proposition 1: Let Init be a finite set of names. If T ′

satisfies fairness against Init, then T does too.
Proof sketch: Let attch ∈ Init and let A be an Init-

attacker that breaks the fairness of T .
1) In any trace of T , A cannot read or write the trusted
party’s memory. Indeed, the cell names held by the trusted
party are never sent on any channel and are under a
restriction. So we can correctly consider A to be a plain
process (no cell names occurring in it).
2) Because all the conditions before the trusted party’s
output are removed in Abort1’, Resolve2’, and Resolve1’,
the following holds: for any trace tr of T such that

(fn(T) ∪ fn(A), ∅, {(T | A, false)})→∗
(E ,S,P ∪ {(out(attch,M);Q, false)})

there exists a trace tr′ of T ′

(fn(T ′) ∪ fn(A), ∅, {(T ′ | A, false)})→∗
(E ′,S ′,P ′ ∪ {(out(attch,M);Q′, false)})

Now, since T doesn’t preserve fairness against A, there
exists a trace

(fn(T) ∪ fn(A), ∅, {(T | A, false)})→∗
(E ,S,P ∪ {(out(attch,M);Q, false)})

with M = (abortC, resolveC). But then by 2) a trace of
T ′ | A breaking fairness also exists.
3) Results of the analysis: We applied our translation to T ′,
and ran ProVerif on the set of clauses obtained. ProVerif
concluded in less than 2 minutes that the query is not
satisfied; in other words, that T ′ satisfies fairness. Thus,
according to proposition 1, the two-party instance of the
GM protocol satisfies fairness in the general case. The code
for this example is available on the web2.

VI. CONCLUSION

We presented StatVerif, an extension of the ProVerif process
calculus with constructs for explicit global state, and detailed
the StatVerif compiler that takes processes written in this
language and returns a corresponding set of clauses. We
proved that the compiler is correct with respect to the
operational semantics.
This machinery allows us naturally to write protocols that
manipulate state in an intuitive high-level language. The
language includes locked sections to enable sequences of
state manipulations to be written conveniently and correctly.
We demonstrated the language on a couple of case studies.

2markryan.eu/research/projects/StatVerif/

12

The StatVerif compiler converts processes written in the
language to clauses upon which ProVerif can be run. We
have engineered the compiler carefully to result in clauses
which do not introduce false attacks (as would be the case
if one used the natural private-channel encoding of state).
Moreover, ProVerif has a good chance to terminate on the
translated clauses. Typically, it will do so easily if the
state space is finite. For infinite state spaces, some further
abstractions are likely to be necessary. We provided the
clauses resulting from the translation of the case studies.
ProVerif terminates easily on those examples, and we are
able to prove their desired properties automatically.
As further work, we intend to implement the StatVerif
compiler, and, if appropriate, to contribute it to the ProVerif
codebase. We also want to develop some further abstractions
that are likely to be necessary in common situations.

Acknowledgements. We gratefully acknowledge financial
support from Microsoft Corporation, and from EPSRC via
the projects Verifying Interoperability Requirements in Per-
vasive Systems (EP/F033540/1) and Analysing Security and
Privacy Properties (EP/H005501/1).

REFERENCES

[1] J. Herzog, “Applying protocol analysis to security device
interfaces,” IEEE Security & Privacy Magazine, vol. 4, no. 4,
pp. 84–87, July-Aug 2006.

[2] S. Mödersheim, “Abstraction by set-membership: verifying
security protocols and web services with databases,” in Proc.
17th ACM Conference on Computer and Communications
Security (CCS’10). ACM, 2010, pp. 351–360.

[3] J. D. Guttman, “Fair exchange in strand spaces,” Journal of
Automated Reasoning, 2011, to appear.

[4] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel, “A formal
analysis of authentication in the TPM,” in Proc. 7th Inter-
national Workshop on Formal Aspects in Security and Trust
(FAST’10), Pisa, Italy, 2010.

[5] B. Blanchet, “An efficient cryptographic protocol verifier
based on prolog rules,” in Proc. of the 14th IEEE Computer
Security Foundations Workshop (CSFW’01). Cape Breton,
Nova Scotia, Canada: IEEE Computer Society Press, Jun.
2001, pp. 82–96.

[6] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Com-
pagna, J. Cuéllar, P. Drielsma, P.-C. Héam, O. Kouchnarenko,
J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinow-
itch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron,
“The AVISPA tool for the automated validation of internet
security protocols and applications.” in Proc. 17th Interna-
tional Conference on Computer Aided Verification (CAV’05),
2005, pp. 281–285.

[7] S. Fröschle and G. Steel, “Analysing PKCS#11 key manage-
ment APIs with unbounded fresh data,” in Proc. Joint Work-
shop on Automated Reasoning for Security Protocol Analysis
and Issues in the Theory of Security (ARSPA-WITS’09), ser.
LNCS, P. Degano and L. Viganò, Eds., vol. 5511. York,
UK: Springer, 2009, pp. 92–106, to appear.

[8] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel, “Formal
analysis of protocols based on TPM state registers,” in Proc.
of the 24th IEEE Computer Security Foundations Symposium
(CSF’11). IEEE Computer Society Press, 2011.

[9] B. Blanchet, “Automatic verification of correspondences for
security protocols,” Journal of Computer Security, vol. 17,
no. 4, pp. 363–434, 2009.

[10] M. Abadi and C. Fournet, “Mobile values, new names, and
secure communication,” in Proc. 28th Symposium on Princi-
ples of Programming Languages (POPL’01), H. R. Nielson,
Ed. London, UK: ACM Press, 2001, pp. 104–115.

[11] B. Blanchet, “Automatic verification of correspondences for
security protocols,” CoRR, vol. abs/0802.3444, 2008.

[12] J. A. Garay, M. Jakobsson, and P. D. MacKenzie, “Abuse-
free optimistic contract signing,” in Proceedings of the 19th
Annual Cryptology Conference on Advances in Crypto, ser.
CRYPTO ’99, London, UK, 1999, pp. 449–466.

APPENDIX A.
CONTRACT SIGNING: TRUSTED PARTY WITH

UNBOUNDED MEMORY

In this section we detail the process of our language mod-
elling the GM protocol without any restriction on the number
of cell names held by the trusted party T .

1 let T = new skT ; (out(c, pk(skT)) | !C)
2 let C = new s; new ct ;
3 [s 7→ (init, init)] |
4 out(c, ct); in(c, xpk1); in(c, xpk2);
5 (! Abort1 | ! Resolve2 | ! Resolve1)

If P1 doesn’t receive P2’s promise, he requests from T an
abort by sending him a message containing the information
about the contract for which he requests the resolve, and of
the form:

(abort︸ ︷︷ ︸
xcmd

, ((

ycontract︷︸︸︷
ct ,

yparties︷ ︸︸ ︷
(P1, P2)),

ysig︷ ︸︸ ︷
sign(skP1, (ct , (P1, P2))))︸ ︷︷ ︸

y

)

︸ ︷︷ ︸
x

Upon receipt of such a command (line 7), the trusted party
executes the subprocess Abort1 which consists of
• Extracting from x the parts xcmd , ycontract , yparties ,

and ysig (lines 8, 10-12, 13, 16).
• Checking that it is an abort request (line 9).
• Checking that it has a record for this contract with these

participants (line 14-15).
• Checking that the third component of x is a signature

of the second (line 17).
Once all these checks on the received message are done and
passed, it handles the request:
• If it has already handled an abort request regarding ct ,

(i.e. ystatus = aborted at line 21) then it retrieves
(line 22) and replies (line 23) with its previous decision
regarding this contract.

13

• Otherwise, if this is the first request regarding ct , (i.e.
ystatus = init at line 24), it updates the status of ct to
aborted (line 25), stores (line 25) and sends (line 26)
the acknowledgement sign(skT , y).

6 let Abort1 =
7 lock; in(c, x);
8 let xcmd = projl(x) in
9 if xcmd = abort then
10 let y = projr(x) in
11 let yl = projl(y) in
12 let ycontract = projl(yl) in
13 let yparties = projr(yl) in
14 if yparties = (xpk1 , xpk2) then
15 if ycontract = ct then
16 let ysig = projr(y) in
17 let ym = check getmsg(xpk1 , ysig) in
18 if ym = yl then
19 read s as ys;
20 let ystatus = projl(ys) in
21 (if ystatus = aborted then
22 let ysigs = projr(ys) in
23 out(c, ysigs); unlock) |
24 (if ystatus = init then
25 s := (aborted, sign(skT , y));
26 out(c, sign(skT , y)); unlock)

If P2 doesn’t receive P1’s signature, he asks T to resolve by
sending it a message containing the information about the
contract for which he requests the resolve. This message is
of the form:

(resolve2︸ ︷︷ ︸
xcmd

, (pcs(skP1 , P2, T, ct)︸ ︷︷ ︸
ypcs1

, sign(skP2 ,

ycontract︷︸︸︷
ct)︸ ︷︷ ︸

ysig2

))

︸ ︷︷ ︸
x

Upon receipt of such a command (line 28), the trusted party
executes the subprocess Resolve2 which consists of
• Extracting from x the parts xcmd , ycontract , ypcs1 ,

and ysig2 (lines 29, 34, 32, and 33).
• Checking that it is a resolve request from a responder

(line 30).
• Checking that it has a record for this contract (line 35).
• Checking that the received promise (ypcs1) and the

received signature (ysig2) concern the same contract
(ycontract) (lines 36-38).

Once all these checks on the received message are done and
passed, it handles the request:
• If it has already handled a resolve2 request regarding

ct , (i.e. ystatus = resolved2 at line 41) then it retrieves
(line 42) and replies (line 43) with its previous decision
regarding this contract.

• Otherwise, if this is the first request regarding ct ,
(i.e. ystatus = init at line 44), it updates the status
of ct to resolved2 and converts the promise ypcs1

into a valid signature ysig1 (line 45) and stores
(line 46) and sends (line 47) the acknowledgement
sign(skT , (ysig1, ysig2)).

27 let Resolve2 =
28 lock; in(c, x);
29 let xcmd = projl(x) in
30 if xcmd = resolve2 then
31 let y = projr(x) in
32 let ypcs1 = projl(y) in
33 let ysig2 = projr(y) in
34 let ycontract = check getmsg(xpk2 , ysig2) in
35 if ycontract = ct then
36 let ycheck = checkpcs(ct , xpk1 , xpk2 ,
37 pk(skT), ypcs1) in
38 if ycheck = ok then
39 read s as ys;
40 let ystatus = projl(ys) in
41 (if ystatus = resolved2 then
42 let ysigs = projr(ys) in
43 out(c, ysigs); unlock) |
44 (if ystatus = init then
45 let ysig1 = convertpcs(skT , ypcs1) in
46 s := (resolved2, sign(skT , (ysig1 , ysig2)));
47 out(c, sign(skT , (ysig1 , ysig2))); unlock)

If P1 doesn’t receive P2’s signature, he requests from T to
resolve. Upon receipt of such a command, the trusted party
executes the subprocess Resolve1 which is analogous to
Resolve2 that we just described.

48 let Resolve1 =
49 lock; in(c, x);
50 let xcmd = projl(x) in
51 if xcmd = resolve1 then
52 let y = projr(x) in
53 let ysig1 = projl(y) in
54 let ypcs2 = projr(y) in
55 let ycontract = check getmsg(xpk1 , ysig1) in
56 if ycontract = ct then
57 let ycheck = checkpcs(ct , xpk2 , xpk1 ,
58 pk(skT), ypcs2) in
59 if ycheck = ok then
60 read s as ys;
61 let ystatus = projl(ys) in
62 (if ystatus = resolved1 then
63 let ysigs = projr(ys) in
64 out(c, ysigs); unlock) |
65 (if ystatus = init then
66 let ysig2 = convertpcs(skT , ypcs2) in
67 s := (resolved1, sign(skT , (ysig1 , ysig2)));
68 out(c, sign(skT , (ysig1 , ysig2))); unlock)

14

APPENDIX B.
CONTRACT SIGNING: TRUSTED PARTY WITH BOUNDED

MEMORY

In this section we detail the process of our language
model that we actually verified to prove that the 2-party
GM protocol satisfies fairness. As we established in
Section V-B2, T ′ is a correct abstraction of T w.r.t. fairness.
Note that in what follows, we took care to ensure that the
primed versions do not handle our witnessing contract ct
which is handled by C.

1 let T′ = new skT ; (out(c, pk(skT)) |!C′ | C′′)

2 let C′ = [s 7→ (init, init)] |
3 Abort1

[
pk(skA)/xpk1, pk(skB)/xpk2

]
4 | Resolve2

[
pk(skA)/xpk1, pk(skB)/xpk2

]
5 | Resolve1

[
pk(skA)/xpk1, pk(skB)/xpk2

]
6 let C′′ = new ct ′; out(c, ct ′) |
7 (! Abort1′ | ! Resolve2′ | ! Resolve1′)

Abort1′ is built from Abort1 just by removing from Abort1
lines 18-25. Because Abort1′ replies to a request without
checking the status of the requested contract, it will always
reply with the abort acknowledgement.

8 let Abort1′ =
9 lock;
10 in(c, xpk1); in(c, xpk2); in(c, x);
11 let xcmd = projl(x) in
12 if xcmd = abort then
13 let y = projr(x) in
14 let yl = projl(y) in
15 let ycontract = projl(yl) in
16 let yparties = projr(yl) in
17 if yparties = (xpk1 , xpk2) then
18 if ycontract = ct ′ then
19 let ysig = projr(y) in
20 let ym = check getmsg(xpk1 , ysig) in
21 if ym = yl then
22 out(c, sign(skT , y)); unlock

Resolve2′ is built from Resolve2 just by removing from
Resolve2 lines 39-44 and line 46. Because Resolve2′

replies to a request without checking the status of the
requested contract, it will always reply with the resolve
acknowledgement.

23 let Resolve2′ =
24 lock;
25 in(c, xpk1); in(c, xpk2); in(c, x);
26 let xcmd = projl(x) in
27 if xcmd = resolve2 then
28 let y = projr(x) in
29 let ypcs1 = projl(y) in
30 let ysig2 = projr(y) in
31 let ycontract = check getmsg(xpk2 , ysig2) in
32 if ycontract = ct ′ then
33 let ycheck = checkpcs(ct ′, xpk1 , xpk2 ,
34 pk(skT), ypcs1) in
35 if ycheck = ok then
36 let ysig1 = convertpcs(skT , ypcs1) in
37 out(c, sign(skT , (ysig1 , ysig2))); unlock

Resolve1′ is built from Resolve1 just by removing from
Resolve1 lines 60-65 and line 67. Because Resolve1′

replies to a request without checking the status of the
requested contract, it will always reply with the resolve
acknowledgement.

38 let Resolve1′ =
39 lock;
40 in(c, xpk1); in(c, xpk2); in(c, x);
41 let xcmd = projl(x) in
42 if xcmd = resolve1 then
43 let y = projr(x) in
44 let ysig1 = projl(y) in
45 let ypcs2 = projr(y) in
46 let ycontract = check getmsg(xpk1 , ysig1) in
47 if ycontract = ct ′ then
48 let ycheck = checkpcs(ct ′, xpk2 , xpk1 ,
49 pk(skT), ypcs2) in
50 if ycheck = ok then
51 let ysig2 = convertpcs(skT , ypcs2) in
52 out(c, sign(skT , (ysig1 , ysig2))); unlock

15

